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The calculation of the configurational averaged vibrational spectrum (G(2)) for a disordered polymer chain 
in the long-wavelength limit is presented. The possibility of constructing a simple continuous polymer 
chain model, which contains all necessary terms for the calculation of the potential energy, is considered. 
The configurational average of the spectral density is obtained by the replica method. To obtain analytical 
results, an expanded Hartree-Fock approximation is used; thereafter the configurational averaged spectral 
density is calculable by application of saddle-point integration. As a result of these calculations, a 
self-consistent equation is found, the solution of which gives (G(2)). 

(Keywords: spectral density; replica method; low-frequency range; saddle-point integration, eonfigurational average) 

I N T R O D U C T I O N  

The calculation of harmonic motion in a polymer chain 
is a subject of great importance for several experiments. 
Especially for observations in inelastic neutron scattering, 
Raman scattering and infra-red absorption, it is necessary 
to know the vibrational density. The first calculations of 
vibrations along an all-trans chain were given by 
Kirkwood 1. Zbinden 2 used the same chain, but he took 
into consideration two different monomer units. In 
another work 3 the authors calculate the vibrational 
spectrum of a chain with disordered distributions of the 
monomers in a copolymer. Halley 4 gives a numerical 
simulation of a chain with stochastic structure, embedded 
in a self-avoiding walk on a diamond lattice. 

The object of our calculations is the vibrational 
spectrum of a polymer chain with a disordered spatial 
structure. In this paper we will restrict ourselves 
exclusively to the long-wave range, which determines the 
thermodynamic properties at low temperature. Therefore 
it is acceptable that the influence of other components 
of motion (for example, relaxation modes) on the 
thermodynamic properties is small in comparison to the 
long-wave oscillations. This low-temperature region is of 
importance not only for spectroscopy but also for the 
calculation of the heat capacity at low temperatures. Note 
that in this case the Tdependence of the heat capacity 
of polymers is determined by the vibrational spectrum 
in the low-frequency range, which corresponds to 
long-wave backbone vibrations. 

M O D E L  

By restriction to the long-wave case it is possible to use 
a continuous model for the polymer chain. We first give 
a construction of the equation of motion of our chain 
model. 

We can accept that a crossing between two different 

chain configurations with respect to an oscillation period 
is very rare at low temperatures. Therefore it is 
reasonable to use a polymer chain with a static structure. 
The long-range interaction - -  for example, the 
excluded-volume effect - -  for a static chain has an 
important influence on the statistical weight for an 
individual configuration, but for the dynamics of the 
oscillations along the polymer chain we can neglect this 
effect. Note that for chain dynamics involving configur- 
ational crossing the application of this phantom chain is 
undoubtedly inappropriate. For  this reason the model 
we choose is a chain of N monomer units of mass mo in 
which there are only interactions along the backbone. 
Assuming that for an individual monomer the deviation 
Yi of the topical position ri from the equilibrium position 
r ° (the coordinates of the static chain) is sufficiently small, 
we can work within the harmonic approximation. 

We follow the ansatz of Helfand, Skolnick and 
others '~7. Here the potential energy is the sum of the 
squared differences of the deformed bond lengths 
b i~r i+  1 --ri~ 

n - - 1  

u,=½ko E (Ib,l-bo) (1) 
i = 1  

and the angles 0~ between neighbouring bond vectors: 
n - - 2  

U2=½w ~ (cos 01-- cos 00) 2 (2) 
i = 1  

with reference to the equilibrium value of the bond length 
bo and of the bond angle 0o, respectively (ko amd w are 
force constants). It can be easily seen that the terms of 
equation (2) are proportional to (0~- 0o) 2 in the harmonic 
c a s e .  

All other contributions to the potential energy - -  for 
example, the energy for the rotational motion of the 
monomers - -  are neglected in this model. 

Expressions (1) and (2) in the harmonic approximation 
are quadratic terms of 6Y~=Y~+I-Yi. Assuming that 
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0 0 {hi = r~ + x - r°: i = I . . . . .  N -  1 } is a set of bond vectors 
in an actual static configuration of the polymer chain, 
we get: 

N - 1  

U~=½(ko/b 2) ~, b°=b°/J@i~@i/~ (3) 
i = l  

and 
N - 2  

U 2 =½(w/b'~) ~_, {[b°.~, -- (cos Oo)b°~fyi~ 
i = l  

+ [b oa -  (cos 0o) o= bi+ ~]6yi+ 1,=} (4) 

The greek indices designate the space coordinates ~, 
= 1 . . . . .  D, where D is the space dimension. 
In the long-wave range the change of the difference 6y~ 

for the index crossing i-oi+ 1 is very small. Thus it is 
justified in each case to unite N' monomers (N'bo small 
compared to the smallest wave length of interest) into 
one mass point. Simultaneously we can proceed to a 
continuous chain. 

Using the coefficients of the local configuration, which 
are symmetric in a and fl: 

N'/2 
12~tJ(s)=(1/N,) ~ hO~ hOIJ Ul+ iUl+  i ( 5 )  

i= - N ' / 2  

and 
N'/2 

(bI+i+lbO~+i+ ho~ ho= #~P(s)=(1/2N') ~ o~ ui+i+lUl+i! (6) 
i= - N ' / 2  

where I =int(s/N'bo), it follows for the potential energy 
in the continuous representation: 

l 

U = (ko/2bo) ~ ds [/,~P(s)(1 + z) 
0 

+ z/~P(s)] (dyJds)(dya/ds) (7) 

Here s is the curve parameter along the chain 
(O<~s<~L=Nbo) and z, given by: 

z = 2w(1 -cosOo)2/(ko b2) (8) 

means the ratio of the force constants. 
We split up 

/a~t~ = (/~t~) + ~ (9) 

where (~t~) is the statistical average of /t~ a over the 
ensemble of all possible static chain configurations and 
the ~'P are the deviations of the local configuration 
coefficients from the configurational averaged values. For 
a sufficiently large N we can use the central limit theorem 
and the quantities ~'P satisfy a Gauss distribution: 

ni = n,0 exp (1/2M/~) ~ ds (/~a)2 (10) 
\ a  >- fl 0 / 

which is the measure of the configurational average. 
Considering the isotropy of our physical problem the 
dispersion M~p of the ~P has the following general 
representation: 

i i i (11) M~p = M16~ + M2(1 -- 6atJ) 

Analogously we must require that the configurational 
averages of the local configuration coefficients #ff have 
the form: 

(#?~) = ~i6 ~ (12) 

which is invariant by a rotation of the coordinate system. 
By use of the substitution: 

~6=p = (1 + z)<#?> + z<~P> 
(13) 

~'P(s) = (1 + z)~,?(s) + z~,~P(s) 

(by means of which the local configuration coefficients 
are united in one expression), we find the following 
equation of motion for the deviation y=(s) in the 
continuous chain model: 

p~=- (ko/bo) {z-d2yJds 2 + d/ds[z=P(s)dyp/ds]} = 0 (14) 

Here p = mo/bo is the one-dimensional mass density along 
the chain. Note that all information about the stochastic 
structure of the static polymer chain is contained in the 
Gauss-distributed local configuration coefficients Z~P(s). 

E IGENVALUE PROBL E M  AND SPECTRAL 
DENSITY 

By using the time Fourier-transformed representation of 
the deviation y~(s, t): 

+oo 

y~(s, ¢o)=(1/2n) j" y~(s, t) exp(iot) dt (15) 
--00 

and the definition of the operator: 

~/~ = Z-6~d2/ds 2 + d/ds[z~(s)d/ds] (16) 

we obtain the Fourier-transformed equation of motion: 

(26 ~ +/~%yp(s, co) = 0 (17) 

in which 2=pboco2/ko . The solution of the attached 
eigenvalue problem detl,~f~P+B~Pl=0 gives a set of 
ND/N' eigenvalues 2 i. Note that these eigenvalues have 
a functional dependence on the topical static structure 
of the polymer chain. 

The spectral density of the frequencies is defined byS: 
ND/N" 

0(co)= ~ 6 ( o - o 3  (18) 
i = l  

By application of the relationship between co and 2 
we can transform this representation into the co 
representation. With the spectral density: 

ND/N, 

G(2)= ~ 6(2-21) (19) 
i = l  

we get the equation: 

coog(C°) = 22 U2G (2) (20) 

between g(co) and G0,). Here, coo=(ko/pbo) 1/2 is the 
ground frequency of the polymer chain. The calculated 
spectral densities g(co) and G(2), respectively, are 
functionals of the static chain structure. Physically, we 
are interested in the configurational average of the 
spectral density over all possible static chain configur- 
ations (g(co)) and (G(2)).  This statistical configurational 
average and its dependence on the frequency is the aim 
of the following calculations. 

For the calculation of the configurational average of 
the spectral density G(2) for equation (17) we use the fact 
that for G(2) the identity: 

(G(2)) = (2/n) lim Im d/d2 (log Z [ 2 ] )  (21) 
e--+O 
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is known 9, where Z[2] is given by the functional integral: 

Z[2]=~y exp(½i ! yat[(2 + ie)6att~ + ~tJ]yt~ds ) (22) 

Observing the cyclic boundary conditions for the 
deviation y~,(s) we can transform expression (22) into: 

Z[2] = ~l/~,~y exp(i ! / ~ d s )  (23) 

with the Lagrangian: 

L~ = ½()~ + ie)y2(s)- ½ dy®/ds[~ rata + ~att~(s)]dYt~/ds (24) 

(~V in this case is an inessential constant). For calculating 
the static confgurational average of log Z[2] we use the 
replica trick of Edwards 1° and Edwards and Anderson 11: 

(log Z)  = lim ((Z m- 1)/m) = lim ( ( Z " ) -  1)/m (25) 
m~O m--~O 

On consideration of (23) and (24) we find for the 
configurational average of Z m the expression: 

( Z [ 2 ] ' )  = ~ y  exp(i .=x~ids[½()'+ie)y~(s))20 

- 2(dy"/ds)2]) 

( exp ( - i  ~=l ! ds'~"a(s)(dy~ds)(dyaJds))) 

(26) 

Now it is simple to determine the statistical configur- 
ational average in equation (26). By using the Gaussian 
probability density function (10) we find, after integration 
over the local configurational coefficients ~'~: 

<Z[2]"> = I~y  exp i ~ I ds[½().+ ie)y"(s)) 2 
a = l O  

a,b = 1 

with 

k 1 = (1 + z ) Z ( M l  - 2M~) + z Z ( M  z - 2M 2) 

(28) 
k2 = 2(1 + z)~ml + 2z~M~ 

The Mi are dispersions, which are introduced in equation 
(11). As a result of this integration, we obtain a coupling 
between the different replicas in the last two terms of the 
exponent in equation (27). 

curve parameter s: 

LG=½ ~ (2+ie--k2~-)[yakl2 
a,at,k 

- (ka/2L)~ ~ ~ kk'qq'Y~kY~'YLbk+k ' +q+¢,o 
at a ,b  k , k '  

q,q" 

-(kE/2L) ~, ~ Z kk' qq' Y~yb'y~qYb~¢fk +k' +q+¢,o 
ct,[J a ,b  k,k" 

q,q '  

(29) 

Corresponding to the model discussed in the second 
section it is necessary to restrict the number of modes to 
N/N'. Thus the smallest physical length of our model is 
l o = N'b o. In the following calculation we assume that all 
k modes of the y field are independent. In this case the 
configurational average between two modes is given by: 

(y~ybq) = ( l y a k l E ) 3 a b  t~atflOk,--q (30) 

In the well known simple Hartree-Fock approxi- 
mationl 2 w e  m u s t  s e t  

a b 

a b a 2 ab + (YatkYaq-- <ly~l >6 6~a6k,-~) (3l) 

All terms in expression (29) that contain A~k = (y, yb _ • p q  = r  p q  

(lyak12)t~ab3at/33k _q) in second or higher order (which does 
not appear here) are neglected• 

In our calculation we use an improvement contrary to 
this approximation. Instead of expression (31) we set: 

a b __ a 2 ab Y~kYaq--lYatkl 6 6ata6k.-~ 
a b a 2 ab + (Yo~Ypq -lY~k[ ~ 3att#Sk.-q) (32) 

ab a b and neglect all terms that contain Aatakq=(y~kypq-- 
ly~126"b6ata6k _~) in second order. Note that in expression 
(32) in comparison with (31) no configurational averages 
(lyakl 2) appear. 

This expanded Hartree-Fock approximation is reason- 
able, if the oscillation amplitudes are sufficiently small. 
(This demand is fulfilled in the low-temperature region.) 
In the representation (32) the correlation between two 
differences l~bflkq a n d  ~a Ar,~k,¢ is the same as in the 
Hartree-Fock approximation in the non-diagonal case 
and it vanishes contrary to the Hartree-Fock approxi- 
mation in the diagonal case. 

Then for the first non-quadratic term in expression 
(29) we get: 

E E E  , , b k k  q q  yaakya~,y~yc~q,~ k + k '  + q + q ' , O  

at a ,b  k ,k" 
q,q" 

(33) 

THE EXPANDED HARTREE-FOCK 
APPROXIMATION 

We cannot give an exact solution for expression (28). 
For this reason we must find a reasonable approximation 
for (Z[2]m). Therefore we transform the exponent of 
(27) into the Fourier representation with respect to the 

Here ~11 and 0~12 are mainly arbitrary weight factors that 
satisfy the condition aql + 0q2 = 1. The frst term in (33) 
is proportional to Dm2(N/N') 2, and the second term is 
proportional to Dm(N/N') 2. In the borderline case of 
m~0  (see equation (25)) the first term vanished rapidly 
in comparison with the second term (see ref. 9). Hence 
it is reasonable to set ~11 =0  and 0~12 = 1. 

Using the approximation (32) the second non- 
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quadratic term in (29) gives: 

kk qq Y~kY~k'YtJqYtJq' 6k + k' + q + q'.O 
~t,fl a,b k,k' 

q,q" 

k 2 a 2 2 \a ,k  / 

-'{'- ~2 3 ~,a ( ~  k 2 , y : , 2 )  2 (34, 

Here the arbitrary coefficients are ~2 ~ + ~ze + ~23 = 1. The 
second term is again proportional to Dm2(N/N') 2 and we 
neglect this contribution (a2e = 0). The other two terms 
are proportional to mD2(N/N') 2 and mD(N/N') 2, 
respectively. The weight factors ~2~ and 0~23 remain open, 
but it is justified to set (~21 =~23 - 1  

Considering (33) and (34) the expression (27) now 
gives: 

( Z[2]m) = R[2]m= {S~y exp[½i~ (2 + ie--k2~[Y~kl 2 

Ill" _[(k2+Zkx)/4L ] kly~,]2 2 (35) 
~t \ k  / _1) 

Using the integration variables Q and Q' we can 
transform the expression R[2] into a Gauss-like 
functional integral with respect to y: 

R[2] = ~ dQ exp(-½~lk21LQ2) 

[~dQ'~y  exp( ½i ~[2 + ie + (2Q + 2Q' -  

-½Ozk;1LQ'2)l° 

= ~ dQ exp( -  ½k21~1LQ2)O[2, Q]O (36) 

Here, f~l =2  and f~2 =2/(1 + 2kl/k2). 
Now the integration over the y field is trivial. For 

0[2, Q] we obtain: 

0[2, Q] = S dQ! e x p ( -  ½f 2k; 1LQ'2  

N/2N' ) 
- ~ log[2+ie-(4~zzfl2/L2)(z-2Q-2Q')] 

/1=1 

(37) 
In the following calculation we use the density function 

defined by: 
N/2N' 

a(x)= (N/N') ~ 6(x-- (4rczf12/L2)) (38) 
p=l 

The continuous representation of a(x) is relatively simple 
to calculate. We obtain: 

n/to 
a(x)=[1/(2rQ] ~ 6(x-k2)dk  

0 

= [1/(47tx/x)]O(x)O(Oz/lo) 2 -- x) (39) 

(O(x) is the well known Heaviside function). Hence we 
write for the expression (37): 

0[2, Q]=~exp[-Lg(Q, Q', 2)] dQ' (40) 

with 

g(Q,Q',2)=½~2k21Q '2 

(n]lo) 2 
+ ~ [ 1 / ( 4 n J x ] l o g [ 2 + i e - x ( z - 2 Q - 2 Q ' ) ]  dx 

0 

(41) 

RESULTS 

An exact integration of expression (40) by using analytical 
methods alone is impossible. For a long chain we can 
find a good approximation for (40). Then we can assume 
L--. ~ and the integral can be evaluated by saddle-point 
integration 9'13. We shall consequently retain terms in 
(40) that are of order exp(L). The saddle-point equation 
is given here by: 

dg(Q, Q', 2)/dO'= Qzk2 aQ, 
(rt//o) 2 

+(1/270 S x / x d x / [ 2 + i e - x ( z - Z Q - 2 Q ' ) ] = O  
0 

(42) 

The solution of this equation is the saddle-point Q's(Q, 2) 
and we obtain for (40): 

0[2, Q]=Ooexp[-Lg(  Q, Q',(Q, 2), 2)] (43) 

In the same way we determine R[2] in expression (36). 
With (43) it follows: 

JR[2] = @o~dQ exp{-L[½~lk21Q2 + Do(Q, Q;(Q, 2), 2)]} 

(44) 

with the pertinent saddle-point equation: 

f~lkz aQ -I- D[t3g/OQ + (og/t~Q's)(t3Q~t3Q) ] 

=f~lk2 XQ + Dt~g/t3Q =f~lk21Q 
Or/to) 2 

+(D/2n) S x / xdx / {2+ie -x[z -ZQ-2Q~(Q,  2)]}=0 
0 

(45) 

Note that because of equation (42) the third term of the 
left-hand side vanishes. 

Comparison of (42) and (43) shows that there exists a 
trivial connection between Q's(Qs, 2) and Qs(2): 

Q'Jas, 2)= (Q1/D~2)Qs(2) (46) 

Now we have an expression for the configurational 
averaged vibrational density. With (35), (25) and (21) it 
follows that: 

(G(2)) = (2/72) d/d2 Im log R[2] 

= (2L/n) Im[f~lk 2 aQsO.)t3Qj2)/O2 

+ 0{00/02 + (t3o/OO~)[(OOs/t3Qs)(OQs/t32) + OQ~/O2] 

+ (Og/OQs)(dQdO)O}] (47) 

Because of equation (42) the third summand vanishes 
and because of (45) the first and the last terms drop out. 
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Figure 1 Func t ion  fl(B) 

As a result of this calculation and by use of the 
transformations: 

'7 =2(1 +f~l/aa~)Qs/z 
B = 2k2(1/~ 2 + D/f2i)l o 1~-- 2 (48) 

% = ~ / l ~  

we find for the configurational averaged vibrational 
spectrum the representation: 

1 

(G(2)) = - -  (LD/o/Tr3~ -) Im ~ dx/[2/2 o + i~ + x2(~/- 1)] 
o 

= - (2Go/Tr){Im q(2 Re r / -  1)/[(2/2o)B]} (49) 

with Go =LloD/2rr2~ and in which the variable ~/fulfils 
the self-consistent integral equation: 

rl + B/(rl - I) = 

1 

[B(2/2o)/(~i- 1)3 ~dx/[2/2o -x2(1 -r / )]  (50) 
o 

DISCUSSION 

Equation (50) is transcendental and so it is clear that we 
cannot give a general analytic solution. This is possible 
only in the limit 2--*0. All other results are based on 
numerical computations. 

At first we see that the configurational averaged 
spectral density (G(2)) fulfils the norm condition: 
+oo  

(G(2))  d2 = (2/x)(Im log R[oo] 
- - o0  

- Im log R [ - oo ] )  = L D / l o  (51  ) 

For 2-o0 we find from equation (50): 

% + B/(rlo - 1) = 0 (52) 

Therefore in this limit: 

lim 21/2<G(2)> = 2ol/2Oo Im[ i / ( i -  %)1/2] (53) 
Z~O 

follows. 
Note that because of (20) this expression is 

proportional to <O(w-o0)). So it is possible to write for 
<a(,~)>: 

(G(2)) = [Go(2o/2) 1/2] [fl(B) + r(B, )~/2o) ] (54) 

and 

(g(~o)) = (2Go2~12COo)[fl(B) + r(B, co21CO2o)] (55) 

respectively, in which the functions fl and r are introduced 
in a manner such that lim r(B, 0)= 0. Therefore the value 
fl(B) describes completely the behaviour of (G(2)) in the 
limit 2-o0. The function r(B, 2) determines the deviation 
of (G(2)) from the limit values in the case 2 > 0. Because 
of (48) the parameter B is a measure of the disorder of 
the chain structure. (Note that B is proportional to k t 
and k2 and these values are proportional to the dispersion 
of the local configuration coefficients/t~P.) 

For B = 0 we have fl(0) = 1 and r(0, 2) --- 0, so that lim 
(G(2))=Go(2o/)O 1/2. The function fl(B) is shown in 
Figure 1. For small B we found that the increase of (g(o))  
is proportional to the increase of the disorder of the 
polymer chain, which is given by the parameter B. With 
(53) we have: 

fl(B) = {2/[1 + (1 -- 4B) 1/2] }1/2 (56) 

For B > 0.25, fl(B) decreases with increasing B. But this 
region is unphysical, because here the stochasticity of the 
Gauss-distributed local configuration coefficients Ft~'a is 
so high that in the potential energy (7) negative 
contributions are possible with a sufficienty large 
weight. On the other hand the potential energy is a 
positive definite expression, so that for large Gauss- 
distributed deviations ~ of the local configuration 
coefficients from the configurational averages (~'~), this 
demand cannot be met any more. 

For small B (B<0.25) the behaviour of fl(B), which 
leads to an increase of the density of states at low 
frequency, is general and can be observed in many 
disordered systems. A possible explanation of this effect 
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is given in ref. 14. The function r(B, o~ 2) is obtained by 
numerical computat ion for the solution of the transcen- 
dental equation (50). Figure 2 shows the results of this 
numerical examination. 

The most important  results of this article are the 
representations (49) and (50) for the configurational 
averaged vibrational spectral density (G(2)) ,  which is 
only determined by two scaling factors (20 and Go) and 
one control parameter  B. The value of the smallest 
physical length lo = N'bo,  which is contained in all of 
these quantities, remains to be determined. Here it is 
reasonable to set 10 = left, where/elf is the effective segment 
length of the polymer chain. By using the well known 
relation between the polymer length and the mean-square 
end-to-end distance (R2) :  

( R  e )  ~ Lleff(Neff)2, - 1 = Lleff(L/letf)2r - 1 (57) 

we find: 

l o ~ L ( ( R 2 ) / L 2 )  1/[2(1 -')] (58) 

Now the vibrational spectrum is determined by molecular 
parameters (force constants, bond lengths and bond 
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